Mark your scantron to answer Questions 1 -25.. Each question has only one answer unless otherwise stated. Each multiple choice question is worth 2 pt.

CHP 9 (Acids and bases)

Use the following to answer Questions 1 and 2. Mark all that apply.

- A) produces H_3O^+ in water
- B) has a sour taste
- C) has a slippery, soapy feel
- D) turns blue litmus blue
- E) pH is less that 7
- 1. (9.1) Which one is characteristic of an acid? Mark all that apply.
- 2. (9.1) Which one is characteristic of a base? Mark all that apply.
- 3. (9.2) Which one of the following is a strong acid? Mark all that apply
 - A) HCl
- B) H₂SO₄
- C) HF
- D) NaOH
- E) H₂O
- 4. (9.2) Which of the following is a neutralization reaction?
 - A) $H_2O + H_2CO_3 = HCO_3 + H_3O +$
 - B) $HF + Na_2CO_3 \rightarrow H_2CO_3 + 2 NaF$
 - C) $2HCl + Zn \rightarrow H_2 + ZnCl_2$
 - D) $3NaOH + AlCl_3 \rightarrow 3NaCl + Al(OH)_3$

For Questions 5-9 match the following answers with the carboxylic acids shown.

- A) Formic acid
- B) acetic acid
- D) citric acid
- E) pyruvic acid
- AB) lactic acid

- 10. (9.3) Consider the following equilibrium that occurs in blood:
- $CO_2 + H_2O \leftrightarrows H^+ + HCO_3$

If the following conditions exist:

 $P_{CO2} = 26 \text{ mm Hg} \qquad \text{(no}$

(normal = 38-50 mm Hg)(nomal = 22-28 mmol/L)

 $HCO_{3}^{-} = 15 \text{ mmol/L}$ pH = 7.81

(nomal = 7.33-7.43)

- The patients has:
 - A) Respiratory Alkalosis
 - B) Metabolic Alkalosis
 - C) Repiratory Acidosis
 - D) Metabolic Acidosis
- 11. (9.3) Indicate which of the substances occur in higher amount in the following equilibrium when acid is added. *Mark all that apply.*

$$CH_3CO_2H + H_2O \leftrightarrows CH_3CO_2^- + H_3O^+$$

- A) CH₃CO₂H
- B) H₂O
- C) CH₃CO₂
- D) H_3O^+
- E) all are higher
- 12. (9.4) Identify the Bronsted-Lowry acid/conjugate base pair in the following reaction.

$$H_2O + H_2CO_3 \leftrightarrows HCO_3^- + H_3O^+$$

- A) H₂O/ HCO₃⁻
- B) H₂CO₃/ HCO₃⁻
- C) H_2O / H_2CO_3
- D) $H_2O / H_3O +$
- E) H_3O^+/HCO_3^-

- 13. (9.5) Which of the following statements correctly describes the hydronium-hydroxide balance in the given solution?
 - A) In acids, [OH-] is less than [H₃O+]
 - B) In bases, $[OH^{-}] = [H_{3}O^{+}]$
 - C) In neutral solutions, $[H_3O^+] = [H_2O]$.
 - D) In bases, $[OH^-]$ is less than $[H_3O^+]$.
 - E) In bases, $[OH^-]$ is less than $[H_2O]$.
- (9.5) For a solution that has a HCl conc. of $7.7 \times 10^{-10} \,\mathrm{M}$:
 - (2 pt) Is this an acidic or basic solution?

(2 pt) What is the pH?	(2 pt) What is the pOH?	(2) What is the [H ⁺]	(2 pt) What is the [OH]?

A typical titration curve for a weak acid looks like this. The generic formula for a monoprotic acid is represented by "HX". What is(are) the major species present where the arrows are along this titration curve? Use these to answer Questions 14-15 (the arrows): A) HX B) X-C) equal HX and X⁻ D) neither HX nor X⁻ pH=6.7 돐 Question16. $(9.5 \, \text{mL})$ pH = 3.753 2 Question15. (4.75 mL) pH=1.5 Question14. (0 mL) ٥ 10 12 NaOH (mL added) 17. Using the titration curve above, identify the acid by it's pK_a A) HCHO₂, pKa=3.74 B) HC₂H₃O₂, pKa=4.76 C) H₂CO₃, pKa=6.35 D) HCO_{3}^{-} , pKa= 9.3

- 18. (9.6) Which of the following is the strongest acid?
 - A) nitrous acid, pKa= 3.35
- B) carbonic acid, pKa=6.35
- C) formic acid, pKa=3.74
- D) acetic acid, pKa=4.76

19. (9.7) What functional groups are found in all amino acids? Mark more than one answer.

- A. carboxylic acid
- B. aromatic
- C. amide
- D. amine
- E. alcohol

20. (9.7) Substances that can act both as an acid and as a base are called

- A) neutral
- B) amphiphatic
- C) indicators
- D) amphoteric
- E) isoteric

21. (9.7) The isoelectric point of an amino acid is defined as:

- A) the pH at which the amino acid exits in the zwitterion form
- B) the pH at which it exists in the basic form
- C) the pH at which it exists in the acidic form
- D) the pH equals the pKa

22. (9.7) Which of the following represents the zwitterion form of the amino acid valine?

D)	H ₂ N-CH-C-O
	CH - CH ₃ CH ₃

(9 pt) (9.7) Draw the major structures of valine that would be present at the following pH's (use the table of pI's)

pH=2.4	pH=6	pH= 9.9

23. (9.8) Considering this equilibrium which occurs in blood, $CO_2 + H_2O \leftrightarrows H^+ + HCO_3^-$ Which of the following would be the cause of metabolic alkalosis?

- A) Hyperventilation where the level of CO₂ in blood decreases rapidly.
- B) Ketoacidosis, that occurs in starvation or diabetes, where blood pH decreases.
- C) When holding ones breath or with impaired breathing where the level of CO₂ in blood increases.
- D) When ingesting huge amounts of alkali for an acid stomach which in turn causes blood levels of pH to increase.

24. (9.8) Which of the following could be a buffer?

- A) HCl + NaCl
- B) HF +NaF
- C) NaF + HCl
- D) NaCl + HF

(6 pt) Calculate the number of tablets needed per dose for a drug that is 35 mg per tablet and is administered to a 35 lb child once a day at 5 mg/kg body weight.

 25. (9.8) In a buffer system of K₂CO₃ and KHCO₃ (pK_a = 9.3) A) the K₂CO₃ neutralizes added acid. B) the K₂CO₃ neutralizes added base. C) the K₂CO₃ is not necessary. D) the KHCO₃ neutralizes added H₂O.
(9.8) Answer the following questions about the buffer system in Question 25.
(3 pt) What is the purpose of this buffer?
(4 pt) What should be the concentrations (in molarity) of the two chemicals that are combined to create this buffer?
What are the acid/conjugate base and base/conjugate acid in this buffer system?
(2 pt) Ackd/conj. Base:
(2 pt) Base/con,. Acid:
Write the chemical equations for what happens when an acid (H ⁺) or a base (OH ⁻) is added to this buffering system.
(2 pt) Added acid:
(2 pt) Added base:

A titration analysis was performed where 5.00 mL of vinegar was titrated with 0.1994 M NaOH solution. Calculate the concentration (M, %) of acid (HAc) in the vinegar using the following data from the titration.

	TRIAL 1
Initial NaOH level in buret	0.51 mL
Final NaOH level in buret (End point)	44.45 mL
(2 pt) Volume (mL) of NaOH used (Show calculation)	
(2 pt) Volume in Liters of NaOH used (Show calculation)	
(4 pt) Moles of NaOH used in titration (Show calculation)	mole NaOH
(2 pt) Moles of HC ₂ H ₃ O ₂ neutralized by NaOI (Show calculation)	Hmole of HC ₂ H ₃ O ₂
(6 pt) Molarity of HC ₂ H ₃ O ₂ (Show calculation)	M HC ₂ H ₃ O ₂
(4 pt) Grams of $HC_2H_3O_2$ (molar mass = 60.06 (Show calculation)	6 g/mol)g HC ₂ H ₃ O ₂
(4 pt) Percent (m/v) HC ₂ H ₃ O ₂ (Show calculation)	% HC ₂ H ₃ O ₂

SOME USEFUL EQUATIONS USED IN CHEMICAL CALCULATIONS.

$$pH = -log[H^+]$$
 $[H^+] = 10^{-pH}$
 $[H^+][OH^-] = 1 \times 10^{-14}$

USEFUL CONVERSION FACTORS AND RELATIONSHIPS

Length

5l unit: meter(m) 1 km = 0.62137 mi 1 mi = 5280 ft = 1.6093 km 1 m = 1.0936 yd 1 in. = 2.54 cm (exactly) 1 cm = 0.39370 in. 1 Å = 10 m

Mass

SI unit: kilogram(kg)
1 kg = 2.2046 lb
1 lb = 453.59 g
= 16 cz
1 amu = 1.6605402 x
$$10^{-24}$$
 g

Temperature

St unit: Kelvin (K)
0 K = -273.15°C
= -459.67°F
K = °C + 273.15
°C =
$$\frac{5}{9}$$
 (°F - 32°)
°F = $\frac{9}{5}$ °C + 32°

Energy (derived)

SI writ:
$$|cule(|)|$$

1 J = 1 kg-m²/s²
1 J = 0.2390 cal
= 1 C x 1 V
1 cal = 4.184 J
1 eV = 1.602 × 10⁻¹⁹ J

Pressure (derived)

SI unit: Pascal (Pa)
1 Pa = 1 N/m²
= 1 kg/m-s²
1 atm = 101.325 Pa
= 760 mm
= 14.70 lb/in²
1 bar =
$$10^5$$
 Pa

Volume (derived)

SI unit: cubic mater (
$$m^3$$
)
1 L = 10 $^{-3}$ m³
= 1 d m³
= 10³ c m³
= 1.0567 qt
1 gal = 4 qt
= 3.7854 L
1 cm³ = 1 mL
1 in³ = 16.4 cm³

PERIODIC CHART OF THE ELEMENTS

1 H 1.00797																1 H 1.00797	He 4.0026
3	4 D -											5 D	6	7 N1	8	9	10 N.L.
6,939	Be											B 10,811	12.0112	N 14.0067	15.9994	 	Ne 20.183
11	12											13	14	15	16	17	18
Na 22.9898	Mg											AI 26.9815	Si 28.086	P	S 32.064	CI 35.453	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.102	Ca	Sc	Ti 47.90	V 50.942	Cr 51.996	Mn 54.9380	Fe 55.847	Co 58.9332	Ni 58.71	Cu 63.54	Zn	Ga	Ge	As 74.9216	Se 78.96	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Μo	Ţс	Ru	Rh	Pd	Ag	Cd	ln.	Sn	Sb	Te	 	Xe
85.47 55	87.62 56	88.905 *57	91.22 72	92.906 73	95.94 74	(99) 75	101.07 76	102.905 77	106.4 78	107.870 79	112.40 80	114.82 81	118.69 82	121.75 83	127.60 84	126.904 85	131.30 86
Cs	Ва	Ľα	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	РЬ	Bi	Ро	Αt	Rn
132.905 87	137.34 88	138.91 ± 89	178.49 104	180.948 105	183.85 106	186.2 107	190.2 108	192.2 109	195.09 110	196.967	200.59 112	204.37	207.19	208.980	(210)	(210)	(222)
Fr	Ra	AC (227)	Rf	Db (262)	Sg	Bh (262)	Hs (265)	Mt (266)	?	? (272)	(277)						

Atomic weights corrected to conform to the 1963 values of the Commission on Atomic Weights.

The group designations used here are the former Chemical Abstract Service numbers.

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	∣ Pr	ING.	PM.	\sim m	Hu	Ga	l D	DV.	HO.	⊢r	∣I M	YD	I U
1 330 350	140 007	144 04	(147)	150.05	15.4	157.05	150 004	100.00	104 000	107.00	100.004	170.04	174.07
140.12	[140.907]	144.24	[[147]	150.55	151.96	157.25	158.924	162.50	1164.950	167.26	168.934	175.04	174.97

‡ Actinide Series

90	91	92	93	94	95	96	97	98	99	100	101	102	103
∣Th	Pa	U	Nσ	Pu	Δm	Cm	Bk	Cf	Fs	Fm	Md	No	۱r
232.038	(231)	238.03			(243)				(254)	(253)	(256)	(256)	(257)

Electronegativity Chart of the Elements

Н																Н	He
2.1																2.1	
Li	Ве											В	С	N	0	F	Ne
1.0	1.5											2.0	2.5	3.0	3.5	4.0	
1.0	1.5											۵.0	۵.۵	3.0	3.5	4.0	
Na	Mg											Al	Si	P	S	Cl	Ar
0.9	1.2											1.5	1.8	2.1	2.5	3.0	
0.0	1.2											1.0	1.0	2.1	2.0	0.0	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	
0.0	1.0	-1.0	-1.0	2.0	1.0	1.0	1.0	2.0	-1.0	-1.0		0					
Rb	Sr	Y	Zr	Nb	Mo	Тc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Хe
0.8	1.0	1.3	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Ро	At	Rn
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	
Fr	Ra	Ac†	Rf	Db	Sg	Bh	Hs	Mt	‡	‡	‡	* La	nthan	ide Se	eries		
0.7	0.9	1.1										† Ac	tinide	e Seri	es		
												'					

[‡] IUAPC has not yet named these elements.

Amino Acid Structures

Amino Acid pKa and pI Values

Amino Acid	рКсоон	pK _{NH₄⁺}	pKr	pl
H ₂ N OH	2.35	9.87		6.00
H ₂ N OH OH NH ₂	2.01	9.04	12.48	11.15
O OH	2.02	8.80		5.41
OH HO NH ₂	2.10	9.82	3.86	2.77
HS OH	2.05	10.25	8.00	5.02
HO OH OH OH	2.10	9.47	4.07	3.22
H ₂ N OH OH OH	2.17	9.13		5.65
H ₂ N OH	2.35	9.78		5.97
N OH OH NH ₂	1.77	9.18	6.10	7.47
OH H ₂ N	2.32	9.76		5.94
OH OO	2.33	9.74		5.98
H ₂ N OH OH NH ₂	2.18	8.95	10.53	9.59
S OH	2.28	9.21		5.74
H ₂ N OH	2.58	9.24		5.48
OH OH	2.00	10.60		6.30
HO—OH	2.21	9.15		5.68
OH OH OH NH ₂	2.09	9.10		5.64
H ₂ N OH	2.38	9.39		5.89
HO H ₁ N OH	2.20	9.11	10.07	5.66
OH H,N	2.29	9.72		5.96

SCRATCH