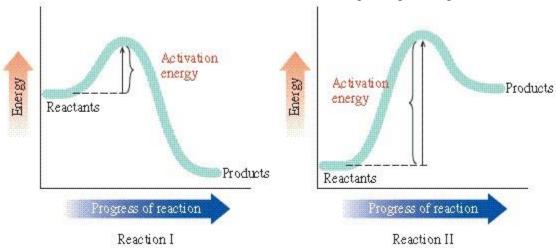
Chem	51,	Spr	ing	2015
Exam	5 (0	Chp	5)	

Name_	
	05 nt

Use your scantron to answer questions 1-22. Some Question have more than one answer. Write answers to the questions without numbers directly on the exam.

CHP 5.1


- 1. For a reaction to be exothermic or endothermic it is determined by:
 - A) the activation energy
 - B) the states of the reactants
 - C) the overall loss or gain of energy when the bonds break and reform
 - D) collision orientation of molecules
- 2. What type of nutrient has the highest energy content per gram?
 - A) carbohydrate
- B) fat
- C) protein
- D) They all have the same energy content.
- 3. Calculate the energy content (Cal) of a snack bar that contains 25 g carbohydrate, 8 g fat and 5 g protein.
 - A) 200 Cal
- B) 200 cal
- C) 38 Cal
- D) 100 Cal
- E) 50 Cal

(18 pt) Calculate the Calories in the nut from the following data obtained from the calorimetry experiment done in lab.

done in lab.		
Mass of empty soft drink can (g)	23.435 g	
Mass of can + water (g)	125.929 g	
(2 pt) Mass of water (g)		
Show calculation.		
Initial temperature water (°C)	23.2 °C	
Final temperature water (°C)	99.9 ℃	
(2 pt) Temperature change of water (°C)		
Show calculation.		
Mass of the nut (g)	2.481 g	
Mass of the residue after nut is burned (g)	0.234 g	
Mass of nut consumed by combustion (g)		
Show calculation		
Specific heat of water	1.00 calorie/g °C	
(6 pt) Energy absorbed by water (cal)		
Show calculation.		
(2 pt) Energy released by the nut (cal)		
(2 pt) Energy released by the nut (Cal)		
Show calculation.		
(4 pt) Cal/g of nut consumed		
Show calculation		

Chp 5.2

- 4. Which of the following factors influence the rate of a reaction?
 - A) temperature B) reactant concentration C) a catalyst D) all of the above
- 5. A fast reaction rate for a chemical reaction is dependent on:
 - A) having a large activation energy
 - B) having a small activation energy
 - C) being exothermic
 - D) being endothermic
- 6. Determine which of the statements is <u>INCORRECT</u> regarding this figure:

- A) Reaction I is exergonic.
- B) Reaction II occurs faster than reaction I.
- C) Reaction II is endergonic.
- D) The activation energy for reaction I is smaller than that of reaction II.
- 7. An enzyme increases the rate of a biological process in what way?
 - A) Increases the concentration of reactants
 - B) Increases the temperature of the reactants
 - C) Lowers the activation energy of the process
 - D) Makes the reaction more exergonic

CHP 5.3

- 8. In what type of reaction are there more reactant substances than product substances?
 - A) combination
- B) decomposition
- C) single displacement
- D) double displacement
- 9. A solution of potassium (K2CrO4) when added to a solution of lead(II) acetate (Pb(CH3COO)2 produces a yellow precipitate of lead(II) chromate. What type of reaction is it?
 - A) combination
- B) decomposition
- C) single displacement
- D) double displacement
- 10. Which of these reactions is a double displacement reaction?
 - A) $K(s) + H_2O(l) \rightarrow H_2(g) + KOH(aq)$
 - B) $Mg(s) + HClO_4(aq) \rightarrow Mg(ClO_4)_2(aq) + H_2(g)$
 - C) $BaO(s) + H2O(l) \rightarrow Ba(OH)2(aq)$
 - D) $\text{CH}_3\text{COOH}(aq) + \text{K}_2\text{CO}_3(aq) \rightarrow \text{H}_2\text{O}(1) + \text{CO}_2(g) + \text{KCH}_3\text{COO}(aq)$

11. What statement is correct about this oxidation-reduction reaction?

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$

- A) O₂ is the oxidizing agent.
- B) SO₂ is the reducing agent.
- C) O₂ is reduced.
- D) SO₂ losses electrons.
- E) All are correct.

12. What is the correctly balanced reaction for the combustion of $C_6H_{14}O$?

A) $C_6H_{14}O$ + 18O \rightarrow $6CO_2$ + $7H_2O$

- B) $C_6H_{14}O$ + $9O_2$ \rightarrow $6CO_2$ + $7H_2O$
- C) $2C_6H_{14}O + 19O_2 \rightarrow 12CO_2 + 14H_2O$
- D) $C_6H_{14}O \rightarrow 6CO_2 + 7H_2O$
- 13. When an organic molecule loses hydrogens it is said to be:
 - A) reduced B) oxidized C) both oxidized and reduced D) neither oxidized or reduced
- 14. If this is the reduced form of NADH which of the following is the oxidized form of this important biomolecule?
 - A) $NADH_2$ B) NAD^+ C) NAD D) NAD^{+2}

CHP 5.4

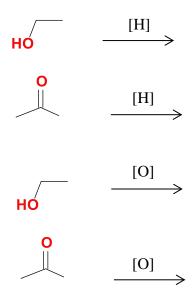
- 15. The structural part of an organic compound that determines its family and chemical reactivity is called a(n) A) functional group. B) organic compound. C) identifying group. D) ionic bond. E) covalent bond.
- (4 pt) Identify the functional groups in the following structures by circling and naming them.

16. What functional groups are in

Mark all that apply

- A) ketone B) aldehyde C) carbo
 - C) carboxylic acid
- D) primary alcohol
- E) secondary alcohol

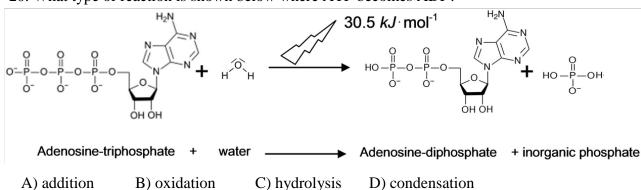
17. Which of the following is a tertiary alcohol?


A)

CH₃CH₂—CH—CH₃

C) CH₃CH₂—CH—CH₂CH₂CH₃ I CH₂CH₂CH₂OH D) OH

- 18. Identify the correct sequence of substances in degree of oxidation.
 - A) alcohol \rightarrow aldehyde \rightarrow carboxylic acid
 - B) carboxylic acid \rightarrow aldehyde \rightarrow alcohol
 - C) alcohol \rightarrow carboxylic acid \rightarrow aldehyde
 - D) carboxylic acid \rightarrow alcohol \rightarrow aldehyde


(12 pt) Complete each of the following oxidation/reduction reactions. Write NR if there is no reaction.

CHP 5.5 & 5.6

- 19. Hydrogenation of an alkene is an example of what kind of reaction?
 - A) addition
- B) oxidation
- C) hydrolysis
- D) condensation

20. What type of reaction is shown below where ATP becomes ADP?

- A) addition
- B) oxidation
- C) hydrolysis
- 21. What is the most likely product of hydration of CH3CH=CH2?
- A) CH₃CH₂CH₂OH B) CH₃CH₂CH₃
- C) CH3CHOHCH3 D) CH3CHOHCH2OH

(8 pt) Draw the products of the following addition reactions.

$$\begin{array}{c}
A) \\
Br_2 \\
B)
\end{array}$$

$$\begin{array}{c}
HCI \\
\end{array}$$

22. Which of the following molecules would yield this product when hydrated?

D) All of the above could yield this product.

(12 pt) Complete the following reactions by drawing the structure(s) of the products.

Oil of wintergreen (methyl salicylate)

PERIODIC CHART OF THE ELEMENTS

1 H 1.00797																H 1.00797	He 4.0026
Li	Be											B	Ç	N.	Ö	F	Ne
11 Na	9.0122 12 Mg											10.811 13 AI	14 Si	14.0067 15 P	16 S	18.9984 17	18 Ar
22.9898 19	24.312 20	21	22	23	24	25	_26	27	28	29	30	26.9815 31		30.9738 33	32.064 34	35.453 35	39.948 36
K 39,102	Ca	Sc 44.956	Ti 47.90	V 50.942	Cr 51.996	Mn 54.9380		Co 58.9332	Ni 58.71	Cu 63.54	Zn 65.37	Ga		As 74.9216	Se 78.96	Br	Kr 83.80
Rb 85.47	38 Sr 87.62	39 Y 88.905	Zr	41 Nb 92,906	42 Mo 95.94	T ₍₉₉₎	84 Ru 101.07	45 Rh 102,905	Pd 106.4	47 Ag	Cd	49 In 114.82	50 Sn 118.69	51 Sb	Te 127.60	53 	Xe 131.30
55 Cs	56 Ba	*57 La 138.91	72 Hf 178.49	73 Ta	74 W 183.85	75 Re 186.2	76 Os	77 r 192.2	78 Pt	79 Au 196.967	80 Hg 200.59	81 T1 204.37	Pb 207.19	83 Bi 208.980	84 Po (210)	85 At	86 Rn
87 Fr	88 Ra	‡89 Ac (227)	104 Rf (261)	105 Db	106 Sg	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 ? (271)	111 ? (272)	112 ?			'		•	

* Lantha	anide Se	eries											
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	D۷	Нο	∣ Er	Τm	Yb	Lu
140.12	140.907	144.24	(147)	150.35	151.96	157.25	158.924	162.50	164.930	167.26	168.934	173.04	174.97
‡ Actinic	de Serie	s											
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	No	Pu	Αm	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.038	(231)	238.03	(237)	(242)	(243)	(247)	(247)	(249)	(254)	(253)	(256)	(256)	(257)

ELECTRONEGATIVITIES OF THE ELEMENTS

H 2.1																H 2.1	He
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	Ne
Na 0.9	Mg 1.2											Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0	Ar
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr
Rb 0.8	Sr 1.0	Y 1.3	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe
Cs 0.7	Ba 0.9	La 1.1	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Ti 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2	Rn
Fr 0.7	Ra 0.9	Ac 1.1	Rf	Db	Sg	Bh	Hs	Mt	‡	‡	‡						