Chapter 9 (Acids, Bases and Buffers in the Body)

NAME KEY

100 points

Use your Scantron to answer questions 143. Each answer is worth 2 pt. There is only one answer per question unless it states otherwise.

Section 9.1 Acids and Bases - Definitions

1. (9.1) What kind of taste do carboxylic acids have?

- A) sweet
- (B)sour
- C) fruity
- D) slippery
- E) salty

Use these answers for questions 2-4

- A) acid(s)
- ers for ques B) base(s)
- C) neutral
- D) alcohols
- E) water

2. (9.1) A

(is) are compounds that donate a H⁺ in water.

3. (9.1)

_(is) are neutralized by an acid.

4. (9.2) HCl is the

found in our stomachs.

Section 9.2 Strong Acids and Bases and Neutralization Reactions.

6. (9.2) _____ is a strong base.

7. (9.4) _____ is a weak acid.

8. (9.4) ______ is a weak base.

Use these answers for Questions 5-8.

- A) ammonia
- B) acetic acid
- C) nitric acid
- D) magnesium hydroxide

9. (9.2) Which one of these reactions is an acid-base neutralization reaction?

(6 pt) Complete and balance the following neutralization reaction.[include (s), (l), (g), (aq) as appropriate]

 $2 \text{ HHr}(\omega q) + \text{Ca}(\text{OH})_2(s) \longrightarrow$

2 HO(1) +

CaBI

The following data was obtained from titration of 4.00 mL vinegar with 0.2403 M NaOH to determine the molar and % concentration of acetic acid. Complete the calculations indicated using the following data.

	TRIAL 1
Initial NaOH level in buret	0.00 mL
Final NaOH level in buret (End point)	19.19 mL
(2 pt) Volume (mL) of NaOH used (Show calculation)	19.19 mL
(2 pt) Volume in Liters of NaOH used (Show calculation)	0.0191986

1000 mL	
(4 pt) Moles of NaOH used in titration (Show calculation)	4,611×10-3 mole NaOH
0.01919 Lx 0,2403	mol = 4.6/1×10-3 mol
(2 pt) Moles of HC ₂ H ₃ O ₂ neutralized by NaOH	4,611×10 mole of HC ₂ H ₃ O ₂
(6 pt) Molarity of HC ₂ H ₃ O ₂ (Show calculation)	$M ext{ HC}_2 ext{H}_3 ext{O}_2$
4.611x10 mol	1,153 M Round to 3 i.s. fo
4.00 mL x 1/L	
(4 pt) Grams of $HC_2H_3O_2$ (molar mass = 60.06 g/mol)	O. 2199 69 BHC2H3O2
(Show calculation) U, 611 × 10-3 m/s > 6	5.06 = (mp) = 0.2789
	/ /

(4 pt) Percent (m/v) HC₂H₃O₂ % HC₂H₃O₂

(Show calculation) x100 = 6.997 7, nomet 3 nf.

Section 9.3 Chemical Equilibrium

10. Considering LeChateliers principle which of the following statements (the underlined portion) is correct?

Use the following equilibrium equation (the one that occurs in blood). $CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3$

A) Metabolic acidosis causes a decrease in CO₂.

increases pH

R) Increased respiration (panting) causes a decrease in CO₂ which in turn increases H⁺. This is called respiratory

Exam 9 (cont)

6) When CO_2 increases, an increase in H^+ results, and in turn <u>pH increases</u>. This is called respiratory alkalosis.

D) If HCO3 increases then H⁺ decreases and CO2 increases, thereby resulting in alkalosis.

11. The following reaction is exothermic. Which of the following will drive the reaction to the right?

 $CH_4(g) + 2 O_2(g) \leftrightarrow CO_2(g) + 2 H_2O(g) + heat$

A) A decrease in O₂ B) A decrease in CH₄

C) The removal of CO₂

D) The addition of CO₂

Section 9.4 Weak Acids and Bases

12. (9.4) What is the conjugate base of OH-?

A) H₃O⁺

A) H₂O

13. (9.4) What is the conjugate acid of OH?

A) H₃O⁺

14. (9.4) In this equilibrium equation, HCO₃ is an

 $HCO_3^- + H_2O$ $CO_3^{2-} + H_3O^+$

B) Base

C) Conjugate Acid

D) Conjugate Base

Section 9.5 pH and the pH Scale

Use these answers for questions 15-19

A) aqueous

B) electrolyte

C) neutral

D) acidic

E) basic

15. (9.5) In solutions the pH is equal to 7.

16. (9.5) A solution of pH 8 is more _____ than a solution of pH 5.

17. (9.5) In _____ solutions the pH is less than 7

18. (9.5) In \bigcirc solutions [OH⁻] is less than [H₃O⁺].

19. (9.5) A solution that contains $[H_3O^+] = 1.2 \times 10^{-8}$ is ______

20, (9.5) If the pH of an aqueous solution increases the molar concentration of

- A) sydronium ion decreases.
- B) hydronium ion increases.
- C) hydroxide ion decreases.
- D) there is no change in the hydronium or hydroxide ion concentration.

Use the following equation for Questions 21 and 22.

pH=-log[H_3O^{\dagger}] and [H_3O^{\dagger}]=10^{-pH}

21. (9.5) What is the pH of a solution that has a $[H_3O^+] = 1.2 \times 10^{-3}$?

- A) 1.20
- (B) 2.92
- C) 11.08
- D) 12.80

22. (9.5) What is the [H₃Q+] concentration in a solution that has a pH = 2.34? 4.57×10^{-3}

- A) 2.3 ×10-3 M
- (B) $1.6 \times 10^{-3} \text{ M}$
- C) 2.2×10^{-12} M
- D) $1.2 \times 10^{1} \text{ M}$

Section 9.6 pKa

Consider the following equilibrium for HCO₃- whose pKa = 10.32.

 $HCO_3^- + H_2O \longrightarrow CO_3^{2-} + H_3O^+$

23. (9.6) Which form will predominate when the pH of the solution is at blood pH?

7.4 210.22 oudin

- A) HGO3-
- B) CO₃-2
- C) H2CO3
- D) H₂O
- E) All of these

Section 9.7 Amino Acids: Common Biological Weak Acids

24. Under what conditions can amino acids be found in an un-ionized form?

- a. at low pH
- b. at pH = 7
- c. at high pH
- d. amino acids are never found in un-ionized form

Use these answers for Questions 25-27

(B)

For the amino acid Val (pI = 6.0) what species exists at each of the following pH's?

25. pH = 1.2

26. pH = 11.2

27. pH = 6.0

28. Which of the following functional groups of an amino acid would be ionic at high pH?

- B) -CH₂-OH
- C) -CH₃
- D) -NH2
- E)

Section 9.8 Buffers and Blood: The Bicarbonate Buffer System

Consider the following equilibrium for HCO₃- whose pKa = 10.32.

 $CO_3^{2-} + H_3O^+$ $HCO_3 + H_2O$

- 29. At which pH is HCO₃ the best buffer?
- A) 2.0
- B) 7.0
- C) 9.0
- E) 12.0

- 30. Which of the following aqueous solutions would be the best buffer?
 - A) NaHCO₃(aq)
- B) NaF(aq)
- (C) Equal amounts H₂CO₃ and NaHCO₃
- D) HF(aq)
- E) HCl(aq)

- 31. At what pH are amino acids the best buffers?
 - A) pH=pKa
- B) pH<pI
- C) $\eta H=pI$
- D)pH>pI

Use the following equilibrium equation (the one that occurs in blood) for question 20 below. $CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3$

32.

hich eonaltion would mast likely be responsible for dalis <mark>mai läälksassono</mark>lukuis <u>Normal</u> Patient Metabolic acidosis Respiratory acidosis 7.85 alkaline 7.33 - 7.43 B) pH:

Metabolic alkalosis Respiratory alkalosis D)

pCO₂: 27 mm Hg 16 mmol/L IHCO₂ I:

38 - 50 mm Ha 22 - 28 mmol/L

(12 pt) A patient who weighs 155 lb is prescribed a medication three times a day that comes in a 0.4% suspension. If the daily dose is 1.0 g/kg/day how many teaspoons are given each time the medicine is administered? Useful information:

1 kg = 2.2 lb and 1 tsp = 5 mL

2.2 lb and 1 tsp = 5 mL

155 16 x 1 kg x 1.0 g wed 1 day x 2 g 1 x tsp + +74 tsp

2.2 lb and 1 tsp = 5 mL

2.2 lb x 1 kg day 3 down too mb 5 mL +80 dose

0.4 g med 1174