PROPERTY	11.4 SOLIDS	11.5 LIQUIDS	11.6 GASES
1. SHAPE	strong cohesive forces	cohesive forces not strong enough to prevent random movement	weak
2. VOLUME	Definite-strong cohesive forces	Definite-strong cohesive forces	Indefinite- cohesive forces weak
3. Density	Particles closely packed	Particles closely packed	Particles widely separated
4. Compressibility		Particles closely packed	Particles widely separated
5. Thermal expansion (thermometers)	causes slight increase in	causes slight increase in space between particles	Particles widely separated and have high KE and move further apart when

Kinetic Theory of Matter:

- Molecules are always moving. This is known as the *kinetic* theory of matter.
- We measure this kinetic energy with a thermometer as *temperature*.
- The greater the material's internal energy, the higher the temperature of that material.
- *Heat* is the energy flow between objects of different temperature.
- Heat and temperature are NOT the same.
- *Brownian motion* describes how visible particles are seen moving due to invisible molecules bumping into them.

Phases of Matter:

Solid

matter that has definite volume and shape.

The molecules are packed together tightly and move slowly.

Liquid

matter that has definite volume but not shape.

Since the molecules of a liquid are loosely packed and move with greater speed, a liquid can flow and spread.

Gas

matter that has no definite volume or shape.

Molecules of a gas are so loosely arranged and move so rapidly that they will fill their container.

Phase Change Descriptions:

Melting

the change from solid to liquid.

Freezing

the change from liquid to solid.

Vaporization

the change from liquid to gas.

Evaporation

vaporization from the surface of a liquid.

Boiling

vaporization from within as well as from the surface of a liquid.

Condensation

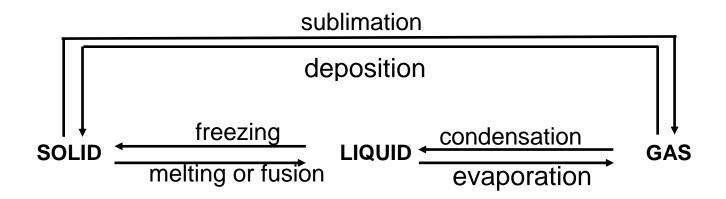
the change from gas to liquid.

Sublimation

the change from solid to gas.

Deposition

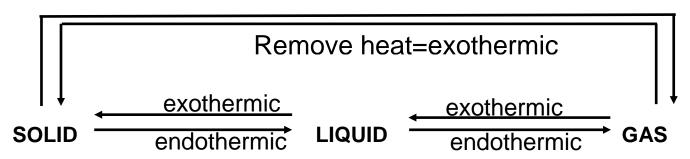
the change from gas to solid.


Endothermic

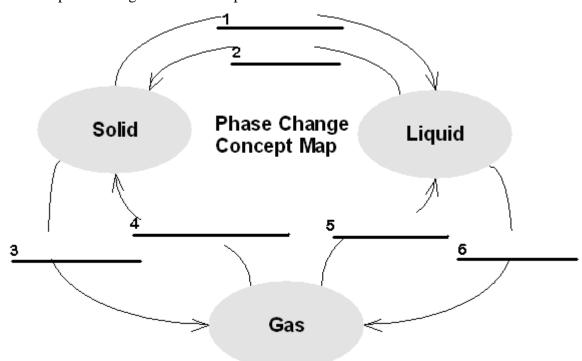
heat added or heat absorbed or heat into a substance.

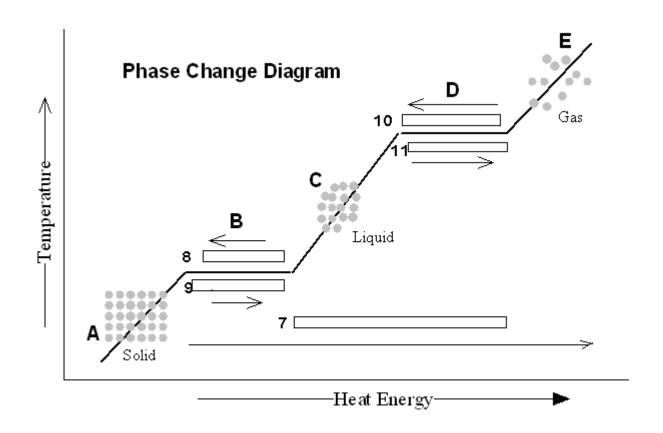
Exothermic

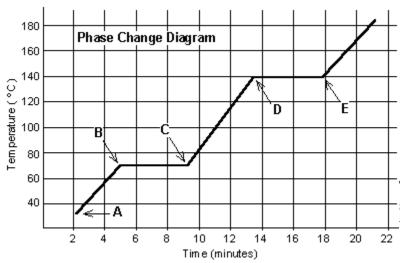
heat removed or heat lost or heat out of a substance.


CHANGES OF STATE

	CHANGES OF STATE		PHYSICAL PROPERTY
solid	freezing melting or	liquid	melting point or freezing point
liquid	evaporation	vapor	boiling point
solid	deposition sublimation	vapor	sublimation point


ENERGY CHANGES IN CHANGES OF STATE


Add heat=endothermic



	CHANGES OF STATE		PHYSICAL PROPERTY
solid	endothermic endothermic	liquid	melting point freezing point
liquid	enodthermic enodthermic	vapor	boiling point
solid	exothermic endothermic	vapor	sublimation point

Fill in the phase changes in the blank provided.

Phase Change Worksheet

The graph was drawn from data collected as a substance was heated at a constant rate. Use the graph to answer the following questions.

At point A , the beginning	of observations, the sub	ostance exists in a soli	id state. Materia	ıl in this phase h	ias
volum	e ands	hape. With each passi	ng minute,	is	
added to the substance. Th	is causes the molecules	of the substance to _	n	nore rapidly whi	ch
we detect by a	rise in the sub	stance. At point B , th	e temperature o	of the substance	is
°C. The solid begin	ns to At po	oint C, the substance i	s completely _	or	in a
state. Mater	ial in this phase has	volun	ne and	shape. T	Γhe
energy put to the substanc	e between minutes 5 and	d 9 was used to conve	ert the substance	e from a	
to a	This heat energy	y is called the latent h	eat of fusion.		
Between 9 and 13 minutes	s, the added energy incre	eases the	of the sub	stance. During t	the
time from point D to poin	It E , the liquid is	By point E ,	the substance is	completely in the	he
phase. Mater	ial in this phase has	volume	and	shape. The	
energy put to the substance	e between minutes 13 ar	nd 18 converted the si	ubstance from a	ι t	io a
state. This h	eat energy is called the	latent heat of vapor	ization. Beyond	d point E , the	
substance is still in the	phase, b	ut the molecules are n	noving	as	
indicated by the increasing	g temperature.				
•					
TT 71 1 1 1 1 1	. 191 1 1 1				

Which of these three substances was likely used in this phase change experiment?

Substance	Melting point	Boiling point
Bolognium	20 °C	100 °C
Unobtainium	40 °C	140 °C
Foosium	70 °C	140 °C

BONUS: For water, the value for the latent heat of vaporization is 6.8 times greater than the latent heat of fusion. Imagine we were adding heat at a constant rate to a block of ice in a beaker on a hot plate, and it took 4 minutes for the ice to melt completely. How long would it take, after the water started boiling, for the beaker to be completely empty (the liquid water totally converted to water vapor)?