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Metabolism involves  
•  catabolic reactions 

that break down 
large, complex 
molecules to provide 
energy and smaller 
molecules. 

•  anabolic reactions 
that use ATP energy 
to build larger 
molecules. 

18.1   
Metabolism and ATP  Energy 

2 

Stages of Metabolism 

Catabolic reactions are organized as  
•  Stage 1:  Digestion and hydrolysis  breaks down  

 large molecules to smaller ones that enter  
 the bloodstream. 

•  Stage 2:  Degradation break down molecules to 
   two- and three-carbon compounds. 

•  Stage 3:  Oxidation of small molecules in the citric 
   acid cycle and electron transport provides 
   ATP energy. 
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Stages of Metabolism 
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Cell Structure and Metabolism 

Metabolic reactions occur in specific sites within cells.  
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Cell Components and Function 

Copyright 
©  2005  
by Pearson 
Education, 
Inc. 
Publishing 
as 
Benjamin 
Cummings 

6 

ATP and Energy 

In the body, energy is stored as  
adenosine triphosphate (ATP). 
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Hydrolysis of ATP 

•  The hydrolysis of ATP to ADP releases 7.3 kcal.  

  ATP         ADP + Pi     +      7.3 kcal 

•  The hydrolysis of ADP to AMP releases 7.3 kcal.    

   ADP         AMP + Pi    +     7.3 kcal 
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Hydrolysis of ATP to ADP and ADP 
to AMP 
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ATP and Muscle Contraction 

Muscle fibers 
•  contain the protein fibers actin and myosin. 
•  contract (slide closer together) when a nerve 

impulse increases Ca2+. 
•  obtain the energy for contraction from the 

hydrolysis of ATP.   
•  return to the relaxed position as Ca2+ and ATP 

decrease. 
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ATP and Muscle Contraction 
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18.2 
Digestion: Stage 1 

Chapter 18     Metabolic Pathways 
and Energy Production 
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In Stage 1, the carbohydrates  
•  begin digestion in the mouth where salivary amylase 

breaks down polysaccharides to smaller polysaccharides 
(dextrins), maltose, and some glucose. 

•  continue digestion in the small intestine where 
pancreatic amylase hydrolyzes dextrins to maltose and 
glucose. 

•  maltose, lactose, and sucrose are hydrolyzed to 
monosaccharides, mostly glucose, which enter the 
bloodstream for transport to the cells. 

Stage 1: Digestion of 
Carbohydrates 
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Digestion of Fats 

In Stage 1, the digestion of fats (triacylglycerols) 
•  begins in the small intestine where bile salts break fat 

globules into smaller particles called micelles. 
•  uses pancreatic lipases to hydrolyze ester bonds, 

forming glycerol and fatty acids. 
•  ends as fatty acids bind with proteins for transport to 

the cells of the heart, muscle, and adipose tissues. 
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Digestion of Triacylglycerols 
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Digestion of Proteins 

In Stage 1, the digestion of proteins 
•  begins in the stomach where HCl in stomach acid 

activates pepsin to hydrolyze peptide bonds. 
•  continues in the small intestine where trypsin and 

chymotrypsin hydrolyze peptides to amino acids. 
•  ends as amino acids enter the bloodstream for 

transport to cells. 
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Digestion of Proteins 

17 

Chapter 18     Metabolic Pathways 
and Energy Production 

18.3   
Important Coenzymes in 

Metabolic Pathways 
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Oxidation and Reduction  

To extract energy from foods 
•  oxidation reactions  

   involve a loss of 2H (2H+ and 2e-). 
            compound                     oxidized compound + 2H 

•  reduction reactions 
   require coenzymes that pick up 2H. 
  coenzyme + 2H        reduced coenzyme 



3/5/10 

4 

19 

Coenzyme NAD+ 

NAD+ (nicotinamide adenine dinucleotide)  
•  participates in reactions that produce a carbon-

oxygen double bond (C=O). 
•  is reduced when an oxidation provides 2H+ and 2e-.  

 Oxidation           O 
            || 
 CH3—CH2—OH          CH3—C—H  + 2H+ + 2e- 

 Reduction 

 NAD+   + 2H+  + 2e-          NADH + H+ 

20 

Structure of Coenzyme NAD+ 

•  contains ADP, 
ribose, and 
nicotinamide.  

•  is reduced to 
NADH when NAD+ 
accepts 2H+ and 
2e-. 

NAD+ (nicotinamide adenine 
dinucleotide)  
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Coenzyme FAD 

FAD (flavin adenine dinucleotide) 
•  oarticipates in reactions that produce a carbon-carbon 

double bond (C=C). 
•  is reduced to FADH2. 

 Oxidation 

    —CH2—CH2—    —CH=CH—  + 2H+ + 2e- 

 Reduction 

 FAD   + 2H+ + 2e-      FADH2 

22 

Structure of Coenzyme FAD 

FAD (flavin adenine   
dinucleotide) 
•  contains ADP 

and riboflavin 
(vitamin B2). 

•  is reduced to 
FADH2  when  
flavin accepts 2H
+ and 2e-.  

23 

Coenzyme A 

Coenzyme A (CoA) activates acyl groups such as the two 
carbon acetyl group for transfer.  

           O                                                     O 
           ||        || 
CH3—C—  +   HS—CoA                 CH3—C—S—CoA     

    acetyl group                    acetyl CoA 

24 

Structure of Coenzyme A 

Coenzyme A (CoA) contains  
•  pantothenic acid (Vitamin B3). 
•  ADP.  
•  aminoethanethiol. 
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Chapter 18     Metabolic Pathways 
and Energy Production 

18.4 
Glycolysis: Stage 2 
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Stage 2: Glycolysis 

Stage 2: Glycolysis  
•  is a metabolic 

pathway that uses 
glucose, a digestion 
product. 

•  degrades six-carbon 
glucose molecules to 
three-carbon. 
pyruvate molecules. 

•  is an anaerobic (no 
oxygen) process.  
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Glycolysis: Energy-Investment 

In reactions 1-5 of glycolysis,  
•  energy is required to add phosphate groups to glucose.  
•  glucose is converted to two three-carbon molecules.  
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Glycolysis: Energy Investment 

2 5 

1 3 4

5

29 

Glycolysis: Energy-Production 

In reactions 6-10 of glycolysis, energy is generated as 
•  sugar phosphates are cleaved to triose phosphates. 
•  four ATP molecules are produced. 
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Glycolysis: Reactions 6-10 

6

7

8

9

10 
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In glycolysis,  
•  two ATP add phosphate to glucose and fructose-6-

phosphate. 
•  four ATP form as phosphate groups add to ADP.   
•  there is a net gain of 2 ATP and 2 NADH. 

  C6H12O6 +  2ADP  + 2Pi  +  2NAD+   
               Glucose   

                2 C3H3O3
- + 2ATP + 2NADH + 4H+ 

                          Pyruvate 

Glycolysis: Overall Reaction 

32 

Under aerobic conditions (oxygen present),  
•  three-carbon pyruvate is decarboxylated. 
•  two-carbon acetyl CoA and CO2 are produced. 

          O   O        pyruvate   
             ||    ||                                               dehydrogenase 
  CH3—C—C—O-  +  HS—CoA   +  NAD+ 

   pyruvate 
                    O 

                 || 
      CH3—C—S—CoA  +  CO2  + NADH  

                 acetyl CoA 

Pyruvate: Aerobic Conditions 

33 

Under anaerobic conditions (without oxygen),  
•  pyruvate is reduced to lactate. 
•  NADH oxidizes to NAD+ allowing glycolysis to continue. 

              O    O       lactate 
                ||     ||       dehydrogenase 
   CH3—C—C—O- + NADH + H+   

           pyruvate 

                           OH    O   
                              |        || 

                CH3—CH—C—O-  +  NAD+ 
                                lactate 

Pyruvate: Anaerobic Conditions 

34 

During strenuous exercise,  
•  anaerobic conditions are produced in muscles. 
•  oxygen is depleted. 
•  lactate accumulates.                          OH 
                                                                │ 
          C6H12O6   + 1ADP + 2Pi     2CH3–CH –COO- + 2ATP 
           glucose                                             lactate 
•  muscles tire and become painful.  

After exercise, a person breaths heavily to repay the  
oxygen debt and reform pyruvate in the liver.  

Lactate in Muscles 

35 

Pathways for Pyruvate 

36 

In Stage 3, the citric acid cycle 
•  operates under aerobic conditions only. 
•  oxidizes the two-carbon acetyl group in acetyl CoA to 

2CO2. 
•  produces reduced coenzymes NADH and FADH2 and 

one ATP directly. 

18.5 The Citric Acid Cycle: Stage 3 
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Citric Acid Cycle Overview 

In the citric acid cycle 
•  acetyl (2C) bonds to 

oxaloacetate (4C) to 
form citrate (6C). 

•  oxidation and 
decarboxylation 
reactions convert 
citrate to oxaloacetate. 

•  oxaloacetate bonds 
with another acetyl to 
repeat the cycle. 

38 

Citric Acid Cycle 

39 

Reaction 1  Formation of Citrate 

Oxaloacetate combines with the two-carbon acetyl 
group to form citrate. 

oxaloacetate acetyl CoA citrate 

O 

C O O - 
C H 2 

C 

C O O - 

S C o A 

O 

C C H 3 

C O O - 
C H 2 

C O O - H O C 

C H 2 

C O O - 

40 

Reaction 2   Isomerization to 
Isocitrate 

Citrate 
•  isomerizes to isocitrate. 
•  converts the tertiary –OH group in citrate to a 

secondary –OH in isocitrate that can be oxidized. 

citrate isocitrate 

C O O - 
C H 2 

C O O - H O C 

C H 2 

C O O - 

H H O 

H 

C O O - 
C 

C O O - C 

C H 2 

C O O - 

41 

Summary of Reactions 1 and 2 
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Reaction 3   Oxidative 
Decarboxylation (1) 

Isocitrate undergoes decarboxylation (carbon removed  
as CO2). 
•  The –OH oxidizes to a ketone releasing H+ and 2e-. 
•  Coenzyme NAD+ is reduced to NADH. 

α-ketoglutarate isocitrate 

+ N A D H + C O 2 O 

H 

C O O - 
C 

H C 

C H 2 

C O O - 

H H O 

H 

C O O - 
C 

C O O - C 

C H 2 

C O O - 

NAD+ 
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Reaction 4  Oxidative 
Decarboxylation (2) 

α-Ketoglutarate 
•  undergoes decarboxylation to form succinyl CoA. 
•  produces a 4-carbon compound that bonds to CoA. 
•  provides H+ and 2e- to form NADH. 

      α-ketoglutarate                         succinyl CoA 

NAD+ 

C o A 

O 

S 

C 

C H 2 

C H 2 

C O O - 

+ N A D H + C O 2 

O 

C O O - 
C 

C H 2 

C H 2 

C O O - 

CoA-SH 

44 

Summary Reactions 3 and 4 
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Reaction 5   Hydrolysis 

Succinyl CoA undergoes hydrolysis, adding a phosphate 
to GDP to form GTP, a high energy compound. 

+ GDP + Pi + GTP + 

succinyl CoA succinate 

46 

Succinate undergoes dehydrogenation 
•  by losing two H and forming a double bond.  
•  providing 2H to reduce FAD to FADH2. 

Reaction 6   Dehydrogenation 

+ FAD + FADH2 

C O O - 

C O O - 

C H 2 

C H 2 H 

H 

C O O - 

C O O - 

C 

C 

F u m a r a t e S u c c i n a t e 

47 

Summary of Reactions 5 and 6 
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Reaction 7 Hydration of Fumarate 

Fumarate forms malate when water is added to the 
double bond. 

+ H 2 O H H 

C O O - 
C 

H H O C 

C O O - 

m a l a t e f u m a r a t e 

H 

H 

C O O - 

C O O - 

C 

C 
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Reaction 8   Dehydrogenation 

Malate undergoes dehydrogenation 
•  to form oxaloacetate with a C=O double bond. 
•  providing 2H for reduction of NAD+ to NADH  + H+. 

+ NAD+ 

C O O - 

C O O - 

O 

C H 2 

C N A D H 

o x a l o a c e t a t e 

+ H + 

m a l a t e 

H H 

C O O - 

C 

H H O C 

C O O - 

50 

Summary of Reactions 7 and 8 
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In the citric acid cycle 
•  oxaloacetate bonds with an acetyl group to form 

citrate. 
•  two decarboxylations remove two carbons as 2CO2. 
•  four oxidations provide hydrogen for 3NADH and one 

FADH2. 
•  a direct phosphorylation forms GTP. 

Summary of in the Citric Acid Cycle 

52 

          Acetyl CoA + 3NAD+ + FAD + GDP + Pi + 2H2O 

         2CO2 + 3NADH + 2H+ + FADH2 + HS-CoA + GTP 

Overall Chemical Reaction for the 
Citric Acid Cycle 

53 

18.6 Electron Transport 

Electron carriers 
•  accept hydrogen and 

electrons from the 
reduced coenzymes 
NADH and FADH2. 

•  are oxidized and reduced 
to provide energy for the 
synthesis of ATP.   

Copyright ©  2005  by Pearson Education, Inc. 
Publishing as Benjamin Cummings 

54 

Electron Transport 

Electron transport 
•  uses electron carriers. 
•  transfers hydrogen ions and electrons from NADH and 

FADH2 until they combine with oxygen. 
•  forms H2O. 
•  produces ATP energy. 
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Electron Carriers 

Electron carriers  
•  are oxidized and reduced as hydrogen and/or electrons 

are transferred from one carrier to the next.  
•  are FMN, Fe-S, Coenzyme Q, and cytochromes. 

e l e c t r o n c a r r i e r A H 2 ( r e d u c e d ) 

e l e c t r o n c a r r i e r B H 2 ( r e d u c e d ) 

e l e c t r o n c a r r i e r B ( o x i d i z e d ) 

e l e c t r o n c a r r i e r A ( o x i d i z e d ) 

56 

FMN (Flavin mononucleotide) 

FMN coenzyme 
•  contains flavin, 

ribitol,and a 
phosphate. 

•  accepts 2H+ + 
2e- to form 
reduced 
coenzyme 
FMNH2. 
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Iron-Sulfur (Fe-S) Clusters 

Fe-S clusters 
•  are groups of proteins containing iron ions and sulfide.   
•  accept electrons to reduce Fe3+ to Fe2+, and lose  

electrons to re-oxidize Fe2+ to Fe3+. 

58 

Coenzyme Q (Q or CoQ) 

Coenzyme Q (Q or CoQ) is 
•  a mobile electron carrier derived from quinone. 
•  reduced when the keto groups accept 2H+ and 2e-. 

59 

Cytochromes 

Cytochromes (cyt)  
are 
•  proteins containing 

heme groups with 
iron ions. 

    Fe3+ + 1e-           Fe2+ 

•  abbreviated as:  
    cyt a, cyt a3, cyt b, 

cyt c, and cyt c1. 

60 

In the electron transport system, the electron carriers 
are 
•  attached to the inner membrane of the mitochondrion. 
•  organized into four protein complexes. 

  Complex I    NADH dehydrogenase 
  Complex II  Succinate dehydrogenase 
  Complex III  CoQ-Cytochrome c reductase 
  Complex IV  Cytochrome c oxidase 

Electron Transport System 
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Electron Transport Chain 

62 

At Complex I,  
•  hydrogen and electrons are transferred from NADH to 

FMN. 
   NADH + H+   + FMN            NAD+  +     FMNH2    

•  FMNH2 transfers hydrogen to Fe-S clusters and then to 
coenzyme Q reducing Q  and regenerating FMN. 
   FMNH2  + Q      QH2   +  FMN 

•  QH2, a mobile carrier, transfers hydrogen to Complex III. 

Complex I NADH Dehydrogenase 

63 

At Complex II,  with a lower energy level than Complex I,  
•  FADH2 transfers hydrogen and electrons to coenzyme 

Q reducing Q and regenerating FAD. 
           FADH2    +    Q           QH2   +  FAD 

•  QH2, a mobile carrier, transfers hydrogen to  
     Complex III. 

Complex II 
Succinate Dehydrogenase 

64 

At Complex III, electrons are transferred 
•  from QH2 to two Cyt b, which reduces Cyt b  and 

regenerates Q. 
 2Cyt b (Fe3+) + QH2         2Cyt b (Fe2+) + Q + 2H+ 

•  from Cyt b to Fe-S clusters and to Cyt c, the second 
mobile carrier. 

     2Cyt c (Fe3+) + 2Cyt b (Fe2+)     
    2Cyt c (Fe2+) + 2Cyt b (Fe3+) 

Complex III  
CoQ-Cytochrome c reductase 

65 

Complex IV  
Cytochrome c Oxidase 

•  At Complex IV, electrons are transferred from  
•  Cyt c to Cyt a.. 
    2Cyt a (Fe3+) +  2Cyt c (Fe2+)     

    2Cyt a (Fe2+) + 2Cyt c (Fe3+) 

•  Cyt a to Cyt a3, which provides the electrons to 
combine H+ and oxygen to form water. 

   4H+  +  O2  +  4e- (from Cyt a3)         2H2O 

66 

Chapter 18     Metabolic Pathways 
and Energy Production 

18.7   
Oxidation Phosphorylation and ATP 
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Chemiosmotic Model 

In the chemiosmotic model 
•  protons (H+) from Complexes I, III, and IV move 

into the intermembrane space. 
•  a proton gradient is created. 
•  protons return to matrix through ATP synthase, a 

protein complex.   
•  the flow of protons provides energy for ATP 

synthesis (oxidative phosphorylation).  

  ADP + Pi  + Energy           ATP 

68 

ATP Synthase 

At ATP synthase,  
•  protons flow back to 

the matrix through a 
channel in the 
protein complex. 

•  energy is generated 
to drive ATP 
synthesis. 

69 

Chemiosmotic Model of Electron 
Transport 

70 

In electron transport, sufficient energy is provided from  
•  NADH (Complex I) oxidation for 3ATPs.  

  NADH  +  3ADP + 3Pi      NAD+  +  3ATP 

•  FADH2 (Complex II) oxidation for 2ATPs.  
  FADH2  + 2ADP + 2Pi      FAD    +  2ATP   

Electron Transport and ATP 

71 

ATP from Electron Transport 

72 

ATP Energy from Glucose 

The complete 
oxidation of  
glucose yields  

•  6CO2, 
•  6H2O, and 
•  36 ATP. 



3/5/10 

13 

73 

In glycolysis 
•  glucose forms 2 pyruvate, 2 ATP and 2NADH.  
•  NADH produced in the cytoplasm cannot enter the 

mitochondria.   
•  a shuttle compound (glycerol-3-phosphate) moves 

hydrogen and electrons into the mitochondria to FAD, 
which forms FADH2.   

•  each FADH2 provides 2 ATP. 
       Glucose              2 pyruvate + 6 ATP 

ATP from Glycolysis 

74 

ATP from Glycolysis 

Reaction Pathway      ATP for One Glucose 
ATP from Glycolysis    
Activation of glucose     -2 ATP 
Oxidation of 2 NADH (as FADH2)    4 ATP 
Direct ADP phosphorylation (two triose)    4 ATP 

                   6 ATP 
Summary:   

  C6H12O6          2 pyruvate + 2H2O + 6 ATP 
               glucose 

75 

ATP from Two Pyruvate 

Under aerobic conditions 
•  2 pyruvate are oxidized to 2 acetyl CoA and 2 NADH. 
•  2 NADH enter electron transport to provide 6 ATP. 

Summary: 
  2 Pyruvate          2 Acetyl CoA  + 6 ATP 

76 

•  One turn of the citric acid cycle provides 
 3 NADH   x   3 ATP  =  9 ATP 
 1 FADH2  x   2 ATP   =  2 ATP 
 1 GTP      x   1 ATP      =         1 ATP 
         Total       =       12 ATP 

 Acetyl CoA              2 CO2  + 12 ATP 

•  Because each glucose provides two acetyl CoA, two 
turns of the citric acid cycle produce 24 ATP. 
 2 Acetyl CoA             4 CO2  + 24 ATP   

ATP from Citric Acid Cycle 

77 

ATP from Citric Acid Cycle 

Reaction Pathway           ATP for One Glucose 
ATP from Citric Acid Cycle  
Oxidation of 2 isocitrate (2NADH)   6 ATP 
Oxidation of 2 α-ketoglutarate (2NADH)   6 ATP 
2 Direct substrate phosphorylations (2GTP)  2 ATP 
Oxidation of 2 succinate (2FADH2)   4 ATP 
Oxidation of 2 malate (2NADH)              6 ATP 

   Total             24 ATP 

Summary: 2Acetyl CoA        4CO2 + 2H2O + 24 ATP 

78 

One glucose molecule undergoing complete oxidation 
provides: 

 From glycolysis      6 ATP 
 From 2 Pyruvate        6 ATP 
 From 2 Acetyl CoA    24 ATP 

Overall ATP Production for One Glucose:   
C6H12O6 + 6O2 + 36 ADP + 36 Pi   
Glucose                                 6CO2 + 6H2O + 36 ATP 

Total ATP from Glucose 
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18.8 β-Oxidation of Fatty Acids 

In reaction 1, oxidation 
•  removes H atoms from 

the α and β carbons. 
•  forms a trans C=C bond. 
•  reduces FAD to  FADH2. 

β  α 

Copyright ©  2005  by Pearson Education, Inc. 
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β-Oxidation of Fatty Acids 

In reaction 2, hydration 
•  adds water across the 

trans C=C bond. 
•  forms a hydroxyl group 

(—OH) on the β 
carbon. 

β α 

Copyright ©  2005  by Pearson Education, Inc. 
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β-Oxidation of Fatty Acids 

In reaction 3, a second 
oxidation 
•  oxidizes the hydroxyl 

group. 
•  forms a keto group  on 

the β carbon.  
•  reduces NAD+   to  

NADH. 

β  α 

Copyright ©  2005  by Pearson Education, Inc. 
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β-Oxidation of Fatty Acids 

In Reaction 4, fatty  
acyl CoA is split  
•  between the α and β 

carbons. 
•  io form Acetyl CoA 

and a shortened fatty 
acyl CoA that 
repeats steps 1 - 4 of 
β-oxidation. 

83 

Cycles of β-Oxidation 

The number of β-Oxidation cycles 
•  depends on the length of a fatty acid. 
•  is one less than the number of acetyl CoA groups 

formed.  
 Carbons in  Acetyl CoA      β-Oxidation 
Cycles 
 Fatty Acid         (C/2)       (C/2 –1) 
 12          6        5 
 14      7      6 
 16    8    7   
 18    9    8 

84 

β-Oxidation of Myristic (C14) Acid 
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β-Oxidation of Myristic (C14) Acid 
(continued) 

7 Acetyl 
CoA 

6 cycles 

86 

β-Oxidation and ATP 

•  Activation of a fatty acid requires 
  2 ATP 

•  One cycle of oxidation of a fatty acid produces 
  1 NADH      3 ATP 
  1 FADH2       2 ATP 

•  Acetyl CoA entering the citric acid cycle produces 
  1 Acetyl CoA    12 ATP 

87 

ATP for Lauric Acid C12 

ATP production for lauric acid  (12 carbons): 
 Activation of lauric acid     -2 ATP 

6 Acetyl CoA 
 6 acetyl CoA x 12 ATP/acetyl CoA   72 ATP 

5 Oxidation cycles   
 5 NADH   x  3 ATP/NADH    15 ATP 
 5 FADH2  x  2 ATP/FADH2    10 ATP 

    Total     95 ATP 

88 

Ketone Bodies 

If carbohydrates 
are not available 
•  body fat breaks 

down to meet 
energy needs. 

•  compounds 
called ketone 
bodies form.  

Ketone 
bodies 

89 

Formation of Ketone Bodies 

Ketone bodies form 
•  if large amounts of acetyl CoA accumulate. 
•  when two acetyl CoA molecules form acetoacetyl CoA. 
•  when acetoacetyl CoA hydrolyzes to acetoacetate. 
•  when acetoacetate reduces to β-hydroxybutyrate or 

loses CO2 to form acetone, both ketone bodies. 

90 

Ketosis 

Ketosis occurs 
•  in diabetes, diets high 

in fat, and starvation. 

•  as ketone bodies 
accumulate. 

•  when acidic ketone 
bodies lowers blood 
pH below 7.4 
(acidosis). 
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Ketone Bodies and Diabetes 

In diabetes 
•  insulin does not 

function properly. 
•  glucose levels are 

insufficient for energy 
needs. 

•  fats are broken down 
to acetyl CoA. 

•  ketone bodies form. 

92 

Chapter 18     Metabolic Pathways 
and Energy Production 

18.9 
Degradation of Amino Acids 

93 

Proteins in the Body 

Proteins provide  
•  amino acids for 

protein synthesis. 
•  nitrogen atoms for 

nitrogen-containing 
compounds. 

•  energy when  
carbohydrate and 
lipid resources are 
not available. 

Copyright ©  2005  by 
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Transamination  

In transamination 
•  amino acids are degraded in the liver. 
•  an amino group is transferred from an amino acid to 

an α-keto acid, usually α-ketoglutarate.  
•  a new amino acid, usually glutamate, is formed. 
•  a new α-keto acid is formed. 

95 

A Transamination Reaction  

         NH3
+         O 

        |                    ||                 
CH3—CH—COO- +     -OOC—C—CH2—CH2—COO- 

     alanine                                              α-ketoglutarate 

        O                     NH3
+ 

           ||            | 
CH3—C—COO-     +     -OOC—CH—CH2—CH2—COO- 

      pyruvate                           glutamate 
(new α-ketoacid)            (new amino acid) 

Glutamate 
dehydrogenase 

96 

Synthesis of Amino Acids  

In humans, transamination of compounds from 
glycolysis or the citric acid cycle produces  nonessential 
amino acids. 
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Oxidative Deamination 

Oxidative deamination 
•  removes the amino group as an ammonium ion from 

glutamate. 
•  provides α-ketoglutarate for transamination. 
             NH3

+                    
 glutamate 

             │                                        dehydrogenase 
-OOC—CH—CH2—CH2—COO- + NAD+ + H2O   
           glutamate 

          O    
             ||            
-OOC—C—CH2—CH2—COO-  + NH4

+ + NADH  
  α-ketoglutarate 98 

Urea Cycle 

The urea cycle 
•  removes toxic ammonium ions from amino acid 

degradation. 
•  converts ammonium ions to urea in the liver. 
                                     O 

       +                                     || 
     2NH4    +   CO2   H2N—C—NH2 

     ammonium ion             urea 

•  produces 25-30 g urea daily for urine formation in 
the kidneys.  
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Carbon Atoms from Amino Acids 

Carbon skeletons of amino acids  
•  form intermediates of the citric acid cycle. 
•  produce energy. 

 Three-carbon skeletons: 
   alanine, serine, and cysteine          pyruvate 
 Four-carbon skeletons:   
   aspartate, asparagine            oxaloacetate 
 Five-carbon skeletons:  
   glutamine, glutamate, proline, 
    arginine, histidine         glutamate 
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Intermediates of the Citric Acid 
Cycle from Amino Acids 

Copyright ©  2005  by Pearson Education, Inc. 
Publishing as Benjamin Cummings 

101 

Overview of Metabolism 

In metabolism 
•  catabolic pathways degrade large molecules. 
•  anabolic pathway synthesize molecules. 
•  branch points determine which compounds are 

degraded to acetyl CoA to meet energy needs or 
converted to glycogen for storage. 

•  excess glucose is converted to body fat. 
•  fatty acids and amino acids are used for energy when 

carbohydrates are not available. 
•  some amino acids are produced by transamination. 
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Overview of Metabolism 
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