Introductory Chemistry, 2nd Edition Nivaldo Tro

Chapter 6 Chemical Composition

Roy Kennedy

Massachusetts Bay Community College
Wellesley Hills, MA

2006, Prentice Hall

6.1 How Much Sodium?

6.2 Counting Nails by the Pound

A hardware store customer buys 2.60 pounds of nails. How many nails did the customer buy?

A dozen of the nails has a mass of 0.150 pounds.

Tro's Introductory Chemistry, Chapte

Counting Nails by the Pound

$$2.60 \, lbs. \times \frac{1 \, doz. \, nails}{0.150 \, lbs.} \times \frac{12 \, nails}{1 \, doz.} = 208 \, nails$$

 The customer bought 2.60 lbs of nails and received 208 nails. He counted the nails by weighing them!

Tro's Introductory Chemistry, Chapter

6.3 & 6.4 Counting Atoms and Molecules by the Gram

By analogy we can calculate how many atoms or molecules there are in a given mass of an element or compound.

Atoms or Molecules and Moles

 If we can find the mass of a particular number of atoms or molecules, we can use this information to convert the mass of a element or compound sample to the number of atoms or molecules in the sample.

> Iro's Introductory Chemistry, Chapter 6

Counting Atoms or Molecules by Moles

The number of atoms or molecules we will use is 6.022×10^{23} and we call this a **mole**

- ✓ 1 mole = 6.022×10^{23} particles
- ✓ Like 1 dozen = 12 particles

ro's Introductory Chemistry, Chapter

• The number of particles in 1 mole is called **Avogadro's Number** = 6.0221421 x 10²³

Iro's Introductory Chemistry, Chapter

mistry, Chapter

We can make two conversion factors:

A) B) $\frac{1 \text{ mole}}{6.022 \text{ x } 10^{23} \text{ atoms}}$ 6.022 x 10^{23} atoms

- A) For converting atoms \rightarrow mole
- B) For converting mole \rightarrow atoms

Practice 1

Conversion sequence: moles \rightarrow atoms, molecules

- 1. How many atoms are in 6.28 moles of aluminum?
- 2. How many atoms are in 90.43 moles of copper?
- 3. How many atoms in 7.64 moles of barium?
- 4. How many molecules in 3.72 moles of sulfur dioxide?
- 5. 76.4 moles of oxygen difluoride contain how many molecules?

Practice 2

Conversion sequence: atoms, molecules → moles

- 1. How many moles of water are represented by 8.33×10^{18} molecules of water?
- 2. How many moles of magnesium is 3.01 x 10²² atoms of magnesium?
- 3. How many moles are 1.20×10^{25} atoms of phosphorous?

Moles and Mass

The mass of one mole of atoms or molecules is called the **molar mass**

Tro's Introductory Chemistry, Chapter 6

12

Moles and Mass (cont.)

The molar mass of an element, in grams, is numerically equal to the element's atomic mass.

fro's Introductory Chemistry, Chapter

13

1 mole

 $^{12}_{6}$ C

is 6.022 x 10²³ atoms

and has a mass of exactly 12 grams

Mole and Mass Relationships

Wildle and Wass Relationships			
Pieces in 1 mole	Weight of 1 mole		
6.022 x 10 ²³ atoms	1.008 g		
$6.022 \times 10^{23} \text{ atoms}$	12.01 g		
6.022×10^{23} atoms	16.00 g		
$6.022 \times 10^{23} \text{ atoms}$	32.06 g		
6.022×10^{23} atoms	40.08 g		
$6.022 \times 10^{23} \text{ atoms}$	35.45 g		
6.022×10^{23} atoms	63.55 g		
	1 m Car 12.		
	Pieces in 1 mole 6.022 x 10 ²³ atoms 6.022 x 10 ²³ atoms		

Moles and Mass (cont.)

The molar mass of a compound, in grams, is numerically equal to the sum of the atomic masses of the elements in the compounds formula.

Tro's Introductory Chemistry, Chapter

16

The molar mass of water is calculated from the atomic weights of hydrogen and oxygen.

Formula = H_2O

Formula Mass = 2(1.01 amu H) + 16.00 amu O = 18.02 amu

Molar Mass = 18.02 g

Tro's Introductory Chemistry, Chapter

17

Practice 3
Calculate formula mass and Molar Mass

Calculate formula mass and Molar Mass			
FORMULA	FORMULA MASS (amu)	MOLAR MASS (g)	
Br ₂			
sodium sulfide			
potassium hydroxide			
fluorine			
Ni			
BaCl ₂			
Fe(SO ₄) ₂			

Converting Between Grams and Moles

Practice 4

Conversion sequence: moles \rightarrow grams

How many grams for each of the following:

- 1. 7.24 moles of silver phosphate
- 2. 2.88 moles of diphosphorous pentoxide
- 3. 0.0009273 moles of zinc bicarbonate
- 4. 154.8 moles of silicon tetraiodide
- 5. 88.624 moles of silver

Practice 5

Conversion sequence: grams \rightarrow moles

How many moles for each of the following?

- 1. 28 grams of CO₂
- 2. 452 g of argon
- 3. 9.273 kg of zinc bicarbonate
- 4. 25.0 g of iron
- 5. 88.624 mg of silver

Converting Between
Grams and Number of Atoms or
Molecules

Practice 6

Conversion sequence: grams \rightarrow moles \rightarrow atoms

How many atoms or molecules for each of the following?

- 1. 28 grams of CO₂
- 2. 452 g of argon
- 3. 9.273 kg of zinc bicarbonate
- 4. 25.0 g of iron
- 5. 88.624 mg of silver

Practice 7

Conversion sequence: atoms \rightarrow moles \rightarrow grams

How many grams in each of the following?

- 1. 3.01 x 10²³ atoms of sodium (Na)
- 2. 4.5×10^{25} atoms of argon
- 3. 9.27 x 10³⁰ molecules of zinc bicarbonate
- 4. 2.50 x 10¹⁹ atoms of iron
- 5. 8.86 x 1015 molecules of dinitrogen tetroxide

6.5 Chemical Formulas as Conversion Factors

- 1 spider \equiv 8 legs
- 1 chair \equiv 4 legs
- 1 H_2O molecule \equiv 2 H atoms \equiv 1 O atom

Tro's Introductory Chemistry, Chapter

Mole Relationships in Chemical Formulas

Moles of Compound	Moles of Constituents
1 mol NaCl	1 mole Na, 1 mole Cl
1 mol H ₂ O	2 mol H, 1 mole O
1 mol CaCO ₃	1 mol Ca, 1 mol C, 3 mol O
1 mol C ₆ H ₁₂ O ₆	6 mol C, 12 mol H, 6 mol O

Aka...Mole Ratios... always whole number ratios

Writing Mole Ratios

Moles of Compound	Moles of Constituents
1 mol NaCl	1 mole Na, 1 mole Cl
1 mol H ₂ O	2 mol H, 1 mole O
1 mol CaCO ₃	1 mol Ca, 1 mol C, 3 mol O
1 mol C ₆ H ₁₂ O ₆	6 mol C, 12 mol H, 6 mol O

Practice 8

- 1. How many moles CI in 4.7 mol CaCl₂?
- 2. How many mol of H in 54.1 mol C10H22?
- 3. How many oxygen atoms in 2.00 mol O₂?
- 4. How many grams of CI in 55 g of CF₃CI?
- 5. How many grams of Fe in 1.0 x 103 kg of Fe₂O₃?

6.6 Percent Composition

Percentage of each element in a compound by mass

Determined from

- The formula of the compound
- 2. The experimental mass analysis of the compound

Percentage =
$$\frac{part}{whole} \times 100\%$$

Tro's Introductory Chemistry, Chapter

1. Percent Composition from the Formula C₂H₅OH

Tro's Introductory Chemistry, Chapter

2. Percent Composition from experiment A 30.0 g sample of carvone contains 24.0 g of C, 3.2 g O and the rest H?

What is it's percent composition

Introductory Chemistry, Chapter

Mass Percent as a Conversion Factor

Tro's Introductory Chemistry, Chapter

. . .

6.8 & 6.9 Empirical and Molecular Formulas

- The simplest, whole-number ratio of atoms in a molecule is called the Empirical Formula
- The Molecular Formula is a multiple of the Empirical Formula

Tro's Introductory Chemistry, Chapter

33

31

Empirical Formulas

Hydrogen Peroxide

Molecular Formula = H_2O_2

Empirical Formula = HO

Benzene

Molecular Formula = C_6H_6

Empirical Formula = CH

Glucose

Molecular Formula = $C_6H_{12}O_6$

Empirical Formula = CH_2O

Tro's Introductory Chemistry, Chapter

Finding an Empirical Formula

- 1) convert the percentages to grams (skip if already grams)
- 2) convert grams to moles (use molar mass of each element)
- 3) write a pseudoformula using moles as subscripts
- 4) divide all by smallest number of moles
- multiply all mole ratios by whole number (2, 3, 4, 5, etc.) to make all mole ratios whole numbers. (skip if <u>all</u> mole ratios already whole numbers)

Tro's Introductory Chemistry, Chapter

35

Finding an Empirical Formula from Experimental Data

Example:

 A laboratory analysis of aspirin determined the following mass percent composition. Find the empirical formula.

C = 60.00%

H = 4.48%

O = 35.53%

troductory Chemistry, Chapter

All these molecules have the same Empirical Formula. How are the molecules different?

Name	Molecular	Empirical
	Formula	Formula
glyceraldehyde	C ₃ H ₆ O ₃	CH ₂ O
erythrose	C ₄ H ₈ O ₄	CH ₂ O
arabinose	$C_5H_{10}O_5$	CH ₂ O
glucose	$C_6H_{12}O_6$	CH ₂ O

Tro's Introductory Chemistry, Chapte

20

All these molecules have the same Empirical Formula. How are the molecules different?

Name	Molecular	Molar	Empirical	EF Molar
	Formula	Mass, g	Formula	Mass, g
glyceraldehyde	C ₃ H ₆ O ₃	90	CH ₂ O	30
erythrose	C ₄ H ₈ O ₃	120	CH ₂ O	30
arabinose	$C_5H_{10}O_5$	150	CH ₂ O	30
glucose	$C_6H_{12}O_6$	180	CH ₂ O	30

Tro's Introductory Chemistry, Chapter

Molecular Formulas

- The molecular formula is a multiple of the empirical formula
- To determine the molecular formula you need to know the empirical formula and the molar mass of the compound

 $\frac{Molar\ Mass_{real\ formula}}{Molar\ Mass_{empirical\ formula}} = factor\ used\ to\ multiply\ subscripts$

Tro's Introductory Chemistry, Chapter

...

All these molecules have the same Empirical Formula. How are the molecules different?

Name	Molecular Formula	Molar Mass, g	Empirical Formula	EF Molar Mass, g	FACTOR
glyceraldehyde	$C_3H_6O_3$	90	CH ₂ O	30	3
erythrose	$C_4H_8O_3$	120	CH ₂ O	30	4
arabinose	$C_5H_{10}O_5$	150	CH ₂ O	30	5
glucose	C ₆ H ₁₂ O ₆	180	CH ₂ O	30	6

Tro's Introductory Chemistry, Chapter

41

Determine the Molecular Formula of Cadinene if it has a molar mass of 204 g and an empirical formula of C₅H₈

- 1. Determine the empirical formula
 - May need to calculate it as previous

 C_5H_8

2. Determine the molar mass of the empirical formula

$$5 C = 60.05 g$$
, $8 H = 8.064 g$
 $C_5 H_8 = 68.11 g$

Tro's Introductory Chemistry, Chapter

42

- 3. Divide the given molar mass of the compound by the molar mass of the empirical formula
 - ✓ Round to the nearest whole number

$$\frac{204 \, \mathrm{g}}{68.11 \, \mathrm{g}} = 3$$

ro's Introductory Chemistry, Chapter

4. Multiply the empirical formula by the factor above to give the molecular formula

$$(C_5H_8)_3 = C_{15}H_{24}$$

Tro's Introductory Chemistry, Chapte

44