Name		

WEIGHTED ATOMIC MASS WORKSHEET

Isotope	At. Mass (amu)	x	Percent Abundance	=	Mass part from isotope
Oxygen-16	15.99491	х	99.759%	=	15.9564 amu
Oxygen-17	16.99474	х	0.037%	=	0.00628805 amu
Oxygen-18	17.99477	х	0.204%	=	0.0367093 amu
L		,	100% (TOTAL)	=	15.99939735 amu

Isotope	At. Mass (amu)	х	Percent Abundance		Mass part from isotope
Hydrogen -1	1.0078	×	99.985%	=	
Hydrogen - 2	2.014	х	0.015%	=	
			100% (TOTAL)	=	

Boron consists of mainly two isotopes, boron-10 and boron-11. Boron-10 is 19.6% of naturally occurring boron and has a mass of 10.01294 amu. Boron-11 is 80.4% of naturally occurring boron and has a mass of 11.00931 amu.

- A) Calculate the weighted average atomic mass of boron.
- B) How does your calculated value compare with the value in the periodic table?

WEIGHTED ATOMIC MASS WORKSHEET

Isotope	At. Mass (amu)	x	Percent Abundance	=	Mass part from isotope
Oxygen-16	15.99491	х	99.759%	=	15.9564 amu
Oxygen-17	16,99474	x	0.037%	=	0.00628805 amu
Oxygen-18	17.99477	x	0.204%	=	0.0367093 amu
	<u>-</u>		100% (TOTAL)	=	15.99939735 amu

Isotope	At. Mass (amu)	X	Percent Abundance	=	Mass part from isotope
Hydrogen -1	1.0078	х	99.985%	=	1.00764883
Hydrogen - 2	2.014	х	0.015%	=	0.0063021
(hanna anna anna anna anna anna anna ann		·	100% (TOTAL)	=	1.00795093 ama

Boron consists of mainly two isotopes, boron-10 and boron-11. Boron-10 is 19.6% of naturally occurring boron and has a mass of 10.01294 amu. Boron-11 is 80.4% of naturally occurring boron and has a mass of 11.00931 amu.

- A) Calculate the weighted average atomic mass of boron.
- B) How does your calculated value compare with the value in the periodic table?

$$^{1}B$$
. $10.01294 \times ,196 = 1.96253624$
 ^{1}B $11.00931 \times .804 = 8.8513164$
 $10.81385964 amn$