Stoichiometry Worksheet

- 1. $Na_2SIO_3(s) + 8 HF(aq) \rightarrow H_2SiF_6(aq) + 2 NaF(aq) + 3 H_2O(l)$
- a. How many moles of HF are needed to react with 0.300 mol of Na₂SiO₃?
- b. How many grams of NaF form when 0.500 mol of HF reacts with excess Na₂SiO₃?
- c. How many grams of Na₂SiO₃ can react with 0.800 g of HF?
- 2. $C_6H_{12}O_6$ (aq) \rightarrow 2 C_2H_5OH (aq) + 2 CO_2 (g)
- a. How many moles of CO_2 are produced when 0.400 mol of $C_6H_{12}O_6$ reacts in this fashion?
- b. How many grams of $C_6H_{12}O_6$ are needed to form 7.50 g of C_2H_5OH ?
- c. How many grams of CO₂ form when 7.50 g of C₂H₅OH are produced?
- $3.\ Fe_2O_3\left(s\right)+CO\left(g\right) \Rightarrow\ Fe(s)+CO_2\left(g\right) \quad (unbalanced!)$
- a. Calculate the number of grams of CO that can react with $0.150 \ \text{kg}$ of Fe_2O_3

b. Calculate the number of grams of Fe and the number of grams of CO_2 formed when 0.150 kg of Fe_2O_3 reacts

4. 2 NaOH (s) +
$$CO_2$$
 (g) \rightarrow Na₂ CO_3 (s) + H_2O (l)

a. Which reagent is the limiting reactant when 1.85 mol NaOH and 1.00 mol CO_2 are allowed to react?

b. How many moles of Na₂CO₃ can be produced?

$$5. C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$$

a. What is the theoretical yield of C_6H_5Br in this reaction when 30.0~g of C_6H_6 reacts with 65.0~g or $Br_2?$

b. If the actual yield of C_6H_5Br was 56.7 g, what is the percent yield?