STOICHIOMETRY 3

Solution stoichiometry – Calculations using molarity and a balanced chemical equation.

Example 1: You add 500 ml of 0.100 M AgNO₃ solution to a solution containing an excess of Cl

ion. How much AgCl precipitate will you form?

Molar masses:	169.88 g	58.	44 g		143.32		85.00
	AgNO ₃ (aq)	+ Na	Cl (aq)	\rightarrow	AgCl (s)	+	NaNO3(aq)

Example 2: If you mix 200 ml of 0.100 M Pb(NO₃)₂ and 300 ml of 0.200 M MgCl₂, how much PbCl₂ precipitate will you form?

Molar masses:	331.22g	95.21 g		278.10 g	148.33 g
	Pb(NO ₃) ₂ (aq) +	MgCl ₂ (aq)	→	PbCl ₂ (aq)	+ Mg(NO ₃) ₂ (aq)

Titration problems

Example 3: How many moles of water form when 25.0 mls of 0.100 M HNO₃ (nitric acid) solution is completely neutralized by NaOH (a base)?

Molar masses:	63.02 g	40.00 g		85.00 g	18.02 g
	HNO_3 (aq)	+ NaOH(aq)	\rightarrow	NaNO ₃ (aq) +	H ₂ O(l)

Example 4: What is the concentration (M) of a sulfuric acid solution, 125.0 mL of which required 37.5 mL of a 0.0125 M NaOH solution for neutralization

	7120 171 174011 60	radion for negative	IIZaiiOII		
Molar masses:	98.08 g	40.00 g		142.04 g	18.02 g
	$H_2SO_4(aq)$	+ 2NaOH(aq)	\rightarrow	Na ₂ SO ₄ (aq) +	2H ₂ O(1)