Math 22 
Review (16.3-16.8)
Name ____________________________________

1.
Let S be the part of the plane 
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 above the rectangle [0, 1]
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[0, 2].  Find the area of S.

2.
Let 
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a.
Find a scalar function f such that 
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b.
Evaluate 
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  if C is the unit circle centered at the origin, traveled in counterclockwise direction starting at (0,1).


c.
Evaluate  
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 if C is the top half of the unit circle centered at the origin, traveled in the counterclockwise direction from (1, 0) to ((1, 0). 

3.
Consider the surface 
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a.
Find a vector that is normal to the surface S.


b.
SET UP an integral that could be used to find the area of the part of the cone S that lies 
between
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c.
Let 
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.  Find the curl and divergence of F.


d.
REWRITE the integral 
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  as an integral in u and v. 


e.
Describe the C that appears when Stokes Theorem is used to evaluate 
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 as a line integral. 

4.
Let C be the path from ((1,1) to (1,1) to (0, 0) and back to (–1,1).

a)
Parameterize C.  


b)
Use this parametrization to evaluate the line integral 
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c)
Evaluate this integral using Green’s Theorem.

5.
Let f be a scalar field and let F and G be vector fields.  Indicate which of the following is a vector field (V),  a scalar field (S),  or meaningless (M). 


____ curl(G)     ____ div(F)     ____ curl(f G)     ____ curl(div(f))     ____ curl(F)×curl(G)

6.
Let S be the part of the plane z = y that is inside the cylinder x2 + y2=1.  At each point on S, the density is given by the function 
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.  SET UP the integral(s) that could be used to find the mass of S , M = 
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7. 
Let
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, and let V be top half of the ball of radius 3 centered at the origin.  By the Divergence Theorem, 
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a)
Compute the 
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that appears in the theorem.


b)
Describe the region S.


c)
Compute the divergence of F

d)
Compute either 
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